Curriculum
Title | Summary | Credit | |
---|---|---|---|
English | Korean | ||
Real Analysis 1 | 실해석학 1 | Lebesgue measure, Lebesgue integral, Differentiation, L^p spaces, Fourier Transform | 3 |
Lebesgue measure, Lebesgue integral, Differentiation, L^p spaces, Fourier Transform | |||
Real Analysis 1 | 실해석학 2 | Lebesgue measure, Lebesgue integral, Differentiation, L^p spaces, Fourier Transform | 3 |
Lebesgue measure, Lebesgue integral, Differentiation, L^p spaces, Fourier Transform | |||
Complex Analysis | 복소해석학 1 | Cauchy Integral Formula, Holomorphic and Meromorphic Functions, Infinite Series and Products, the Gamma Functions, Harmonic Functions, Conformal Mapping, Dirichlet 's Problem. | 3 |
Cauchy Integral Formula, Holomorphic and Meromorphic Functions, Infinite Series and Products, the Gamma Functions, Harmonic Functions, Conformal Mapping, Dirichlet 's Problem. | |||
Complex Analysis | 복소해석학 2 | Cauchy Integral Formula, Holomorphic and Meromorphic Functions, Infinite Series and Products, the Gamma Functions, Harmonic Functions, Conformal Mapping, Dirichlet 's Problem. | 3 |
Cauchy Integral Formula, Holomorphic and Meromorphic Functions, Infinite Series and Products, the Gamma Functions, Harmonic Functions, Conformal Mapping, Dirichlet 's Problem. | |||
Functional Analysis | 함수해석학 1 | Hilbert space, Banach space, Frechet space, Bounded Operators, Spectral Theory for Selfadjoint Operators. | 3 |
Hilbert space, Banach space, Frechet space, Bounded Operators, Spectral Theory for Selfadjoint Operators. | |||
Functional Analysis | 함수해석학 2 | Hilbert space, Banach space, Frechet space, Bounded Operators, Spectral Theory for Selfadjoint Operators. | 3 |
Hilbert space, Banach space, Frechet space, Bounded Operators, Spectral Theory for Selfadjoint Operators. | |||
Topics in Analysis 1 | 해석학 특강 1 | Recent Topics in Analysis | 3 |
Recent Topics in Analysis | |||
Topics in Analysis 2 | 해석학 특강 2 | Recent Topics in Analysis | 3 |
Recent Topics in Analysis | |||
Several Complex Variables | 다변수복소해석학 1 | Cauchy Integral Formula in Polydiscs, Domains of Holomorphy, Pseudoconvexity and Plurisubharmonic Functions, Existence and Approximation Theorems for Holomorphic Functions via L2-estimates for the Cauchy-Riemann Operator δ-operator. | 3 |
Cauchy Integral Formula in Polydiscs, Domains of Holomorphy, Pseudoconvexity and Plurisubharmonic Functions, Existence and Approximation Theorems for Holomorphic Functions via L2-estimates for the Cauchy-Riemann Operator δ-operator. | |||
Several Complex Variables | 다변수복소해석학 2 | Cauchy Integral Formula in Polydiscs, Domains of Holomorphy, Pseudoconvexity and Plurisubharmonic Functions, Existence and Approximation Theorems for Holomorphic Functions via L2-estimates for the Cauchy-Riemann Operator δ-operator. | 3 |
Cauchy Integral Formula in Polydiscs, Domains of Holomorphy, Pseudoconvexity and Plurisubharmonic Functions, Existence and Approximation Theorems for Holomorphic Functions via L2-estimates for the Cauchy-Riemann Operator δ-operator. | |||
Harmonic Analysis | 조화해석학 | Interpolation Theorems, Singular Integrals, Hilbert Transform, Riesz Transform, BMO, Littlewood-Payley theory | 3 |
Interpolation Theorems, Singular Integrals, Hilbert Transform, Riesz Transform, BMO, Littlewood-Payley theory | |||
Algebra 1 | 대수학 1 | Group, Ring, Module, Field, Galois Group, Group Representation. | 3 |
Group, Ring, Module, Field, Galois Group, Group Representation. | |||
Algebra 2 | 대수학 2 | Group, Ring, Module, Field, Galois Group, Group Representation. | 3 |
Group, Ring, Module, Field, Galois Group, Group Representation. | |||
Group Theory | 군론 | Free Abelian Group, Finitely Generated Abelian Group, Sylow Theorem, Finite Group, Group Representation | 3 |
Free Abelian Group, Finitely Generated Abelian Group, Sylow Theorem, Finite Group, Group Representation | |||
Group Representation Theory | 군표현론 | Group Representation, Group Character | 3 |
Group Representation, Group Character | |||
Topics in Algebra 1 | 대수학 특강 1 | Recent Topics in Algebra | 3 |
Recent Topics in Algebra | |||
Topics in Algebra 2 | 대수학 특강 2 | Recent Topics in Algebra | 3 |
Recent Topics in Algebra | |||
Commutative Algebra and Algebraic Geometry | 가환대수 및 대수기하학 | Properties of Communative Algebra, Affine Variety, Projective Variety, Riemann-Roch Theorem | 3 |
Properties of Communative Algebra, Affine Variety, Projective Variety, Riemann-Roch Theorem | |||
Homological Algebra | Homology 대수 | Tensor Product of Modules, Flatness, Chain Complex, Ext, Tor, Cohomology Group | 3 |
Tensor Product of Modules, Flatness, Chain Complex, Ext, Tor, Cohomology Group | |||
Algebraic Number Theory | 대수적 정수론 | Principal Ideal Rings, Integers on Quadratic Fields, Norms and Traces, Noetherian Rings and Dedekind Rings, Ideal Classes and Unit Theorem 등을 다룬다. | 3 |
Principal Ideal Rings, Integers on Quadratic Fields, Norms and Traces, Noetherian Rings and Dedekind Rings, Ideal Classes and Unit Theorem 등을 다룬다. | |||
Number Theory | 정수론 | Prime Numbers, Multiplicative Functions, Euler 's Theorem, Wilson 's Theorem, Primitive roots, Quadratic residues, Diophantine Equations, Continued Fractions, Quadratic Form | 3 |
Prime Numbers, Multiplicative Functions, Euler 's Theorem, Wilson 's Theorem, Primitive roots, Quadratic residues, Diophantine Equations, Continued Fractions, Quadratic Form | |||
General Topology | 일반위상수학 | Compactification, Uniform Spaces, Completeness, Partitions of Unity | 3 |
Compactification, Uniform Spaces, Completeness, Partitions of Unity | |||
Algebraic Topology 1 | 대수적 위상수학 1 | Simplicial Complex, Homology Group, Homotopy Theory, Fundamental Group, CW-complex, Duality | 3 |
Simplicial Complex, Homology Group, Homotopy Theory, Fundamental Group, CW-complex, Duality | |||
Algebraic Topology 2 | 대수적 위상수학 2 | Simplicial Complex, Homology Group, Homotopy Theory, Fundamental Group, CW-complex, Duality | 3 |
Simplicial Complex, Homology Group, Homotopy Theory, Fundamental Group, CW-complex, Duality | |||
Topics in Topology1 | 위상수학특강 1 | Recent Topics in Topology | 3 |
Recent Topics in Topology | |||
Topics in Topology 2 | 위상수학특강 2 | Recent Topics in Topology | 3 |
Recent Topics in Topology | |||
Differential Geometry 1 | 미분기하학 1 | Riemannian Geometry, Connection, Covariant Derivative, Lie Group. Vector Bundles, Characteristic Classes | 3 |
Riemannian Geometry, Connection, Covariant Derivative, Lie Group. Vector Bundles, Characteristic Classes | |||
Differential Geometry 2 | 미분기하학 2 | Riemannian Geometry, Connection, Covariant Derivative, Lie Group. Vector Bundles, Characteristic Classes | 3 |
Riemannian Geometry, Connection, Covariant Derivative, Lie Group. Vector Bundles, Characteristic Classes | |||
Differentiable Manifolds | 미분다양체론 | Concepts of Differential Manifolds, Vector Fileds, Tangent Bundle, Cotangent Bundle, Riemannian Geometry | 3 |
Concepts of Differential Manifolds, Vector Fileds, Tangent Bundle, Cotangent Bundle, Riemannian Geometry | |||
Differential Topology | 미분위상수학 | Differentiable Mappings, Transversality, Sard 's Theorem, Intersection Theory, The Euler Characteristic | 3 |
Differentiable Mappings, Transversality, Sard 's Theorem, Intersection Theory, The Euler Characteristic | |||
Regression Analysis | 회귀 분석론 | 선형회귀 모형의 추정 및 가설검정, error term의 가정에 대한 여러 가지 문제를 고찰하고, 예측에 대한 문제들을 다룬다. | 3 |
선형회귀 모형의 추정 및 가설검정, error term의 가정에 대한 여러 가지 문제를 고찰하고, 예측에 대한 문제들을 다룬다. | |||
Analysis of Variance and Design of Experiments | 분산분석 및 실험계획법 | 고전적 분산 분석 모형의 자세한 소개 및 그 응용, 회귀분석, 공분산분석, 선형모형, 기하학적 해석. | 3 |
고전적 분산 분석 모형의 자세한 소개 및 그 응용, 회귀분석, 공분산분석, 선형모형, 기하학적 해석. | |||
Multivariate Analysis | 다변량 분석 | 다변량자료분석론 및 그 응용, 다변량회귀분석, 판별분석, Pattern분류, 집락분석, 인자분석, 주성분분석. | 3 |
다변량자료분석론 및 그 응용, 다변량회귀분석, 판별분석, Pattern분류, 집락분석, 인자분석, 주성분분석. | |||
Stochastic Processes | 확률 과정론 | 확률과정론의 이론 및 그 응용, Random walk, Gambler 's ruin, Recurrent events, Discrete-time Markov chains, Branching processes, Poisson processes, Renewal theory, Continuous-time Markov chains, Birth and Death processes, Queueing theory, Brownian motion. | 3 |
확률과정론의 이론 및 그 응용, Random walk, Gambler 's ruin, Recurrent events, Discrete-time Markov chains, Branching processes, Poisson processes, Renewal theory, Continuous-time Markov chains, Birth and Death processes, Queueing theory, Brownian motion. | |||
Nonparametric Statistics | 비모수 통계학 | Distribution-free Tests, U Statistics, Asymptotic Efficiency, Hodges-Lehman Estimator, M-estimator 등의 문제를 다룬다. | 3 |
Distribution-free Tests, U Statistics, Asymptotic Efficiency, Hodges-Lehman Estimator, M-estimator 등의 문제를 다룬다. | |||
Statistical Decision Theory | 통계적 의사 결정론 | 결정이론적 관점에서 본 통계적 추측이론과 Bayesian 분석을 이용한 통계분석으로서 결정이론을 중심으로 여러 문제를 다룬다. | 3 |
결정이론적 관점에서 본 통계적 추측이론과 Bayesian 분석을 이용한 통계분석으로서 결정이론을 중심으로 여러 문제를 다룬다. | |||
Time Series Analysis | 시계열 분석 | 시계열 자료분석에 쓰이는 통계적 기법, Estimation of Trends and Seasonal Adjustment, Stationary Series-Autocorrelation and Spectrum, Estimation and Interpretation of Spectra, ARIMA Models and Fitting Theorem to Data. | 3 |
시계열 자료분석에 쓰이는 통계적 기법, Estimation of Trends and Seasonal Adjustment, Stationary Series-Autocorrelation and Spectrum, Estimation and Interpretation of Spectra, ARIMA Models and Fitting Theorem to Data. | |||
The Analysis of Categorical Data | 범주형 자료분석 | log-linear 모형의 이론 및 그의 multi-way contingency table 과 종속변수가 범주형인 자료들에의 응용, Poisson distribution, one-way, two-way, and multi-way frequency tables, logistic regression, MLE.. | 3 |
log-linear 모형의 이론 및 그의 multi-way contingency table 과 종속변수가 범주형인 자료들에의 응용, Poisson distribution, one-way, two-way, and multi-way frequency tables, logistic regression, MLE.. | |||
Sequential Analysis | 축차적 통계분석 | SPRT 및 Sequential 추정이론, 정규분포 및 이산형분포에서의 응용 및 축차적 의사결정론에 관한 응용. | 3 |
SPRT 및 Sequential 추정이론, 정규분포 및 이산형분포에서의 응용 및 축차적 의사결정론에 관한 응용. | |||
Sampling, Simulation, and Monte Carlo Method | 표준추출법, 모의실험 및 몬테칼로 방법 | Survey를 목적으로 한 표본추출법의 기본원리와 기법, simple random sampling, stratified sampling, systematic sampling, cluster sampling, Monte Carlo 방법과 모의실험의 통계적 배경, variance reduction, conditional Monte Carlo, control variates, antithetic variates, regression methods, 통계적 추정문제의 응용. | 3 |
Survey를 목적으로 한 표본추출법의 기본원리와 기법, simple random sampling, stratified sampling, systematic sampling, cluster sampling, Monte Carlo 방법과 모의실험의 통계적 배경, variance reduction, conditional Monte Carlo, control variates, antithetic variates, regression methods, 통계적 추정문제의 응용. | |||
Statistical Consulting and Practices 1 | 통계상담 및 실습 1 | 통계자문 및 실무를 위한 다양한 연습을 목표로 실질적인 project에 참여하여 통계자료분석 및 보고서 작성법을 배운다. | 3 |
통계자문 및 실무를 위한 다양한 연습을 목표로 실질적인 project에 참여하여 통계자료분석 및 보고서 작성법을 배운다. | |||
Statistical Consulting and Practices 2 | 통계상담 및 실습 2 | 통계자문 및 실무를 위한 다양한 연습을 목표로 실질적인 project에 참여하여 통계자료분석 및 보고서 작성법을 배운다. | 3 |
통계자문 및 실무를 위한 다양한 연습을 목표로 실질적인 project에 참여하여 통계자료분석 및 보고서 작성법을 배운다. | |||
Topics in Probability 1 | 확률론 특강 1 | Recent Topics in Probability | 3 |
Recent Topics in Probability | |||
Topics in Probability 2 | 확률론 특강 2 | Recent Topics in Probability | 3 |
Recent Topics in Probability | |||
Topics in Statistics 1 | 통계학 특강 1 | Recent Topics in Statistics | 3 |
Recent Topics in Statistics | |||
Topics in Statistics 2 | 통계학 특강 2 | Recent Topics in Statistics | 3 |
Recent Topics in Statistics | |||
Topics in Multivariate Analysis 1 | 다변량분석 특강 1 | Recent Topics in Multivariate Analysis | 3 |
Recent Topics in Multivariate Analysis | |||
Topics in Multivariate Analysis 2 | 다변량분석 특강 2 | Recent Topics in Multivariate Analysis | 3 |
Recent Topics in Multivariate Analysis | |||
Topics in Stochastic Processes 1 | 확률과정론 특강 1 | Recent Topics in Stochastic Processes | 3 |
Recent Topics in Stochastic Processes | |||
Topics in Stochastic Processes 2 | 확률과정론 특강 2 | Recent Topics in Stochastic Processes | 3 |
Recent Topics in Stochastic Processes | |||
Numerical Analysis 1 | 수치 해석학 1 | 방정식의 수치해법 및 오차분석, 근사값, Interpolation, 수치미분과 적분, 상미분 방정식의 수치해법과 이론, 초기치 문제의 수치해법 및 안정도 분석, 경계치 문제의 수치해법 및 안정도분석, 유한차분법, 편미분방정식의 수치해법 및 오차분석, Navier-Stokes Equation의 수치해법. | 3 |
방정식의 수치해법 및 오차분석, 근사값, Interpolation, 수치미분과 적분, 상미분 방정식의 수치해법과 이론, 초기치 문제의 수치해법 및 안정도 분석, 경계치 문제의 수치해법 및 안정도분석, 유한차분법, 편미분방정식의 수치해법 및 오차분석, Navier-Stokes Equation의 수치해법. | |||
Numerical Analysis 2 | 수치 해석학 2 | 방정식의 수치해법 및 오차분석, 근사값, Interpolation, 수치미분과 적분, 상미분 방정식의 수치해법과 이론, 초기치 문제의 수치해법 및 안정도 분석, 경계치 문제의 수치해법 및 안정도분석, 유한차분법, 편미분방정식의 수치해법 및 오차분석, Navier-Stokes Equation의 수치해법. | 3 |
방정식의 수치해법 및 오차분석, 근사값, Interpolation, 수치미분과 적분, 상미분 방정식의 수치해법과 이론, 초기치 문제의 수치해법 및 안정도 분석, 경계치 문제의 수치해법 및 안정도분석, 유한차분법, 편미분방정식의 수치해법 및 오차분석, Navier-Stokes Equation의 수치해법. | |||
Numerical Linear Algebra | 수치 선형대수학 | 선형대수와 관련된 문제의 수치해법 및 이론, 유한요소법, Eigenvalue 문제, 특수행렬의 수치해법, 수렴비율, 오차분석 등을 다룬다. | 3 |
선형대수와 관련된 문제의 수치해법 및 이론, 유한요소법, Eigenvalue 문제, 특수행렬의 수치해법, 수렴비율, 오차분석 등을 다룬다. | |||
Applied Mathematics 1 | 응용수학 1 | Analysis for applied mathematics, Numerical Analysis, Cryptography, Mathematical Finance | 3 |
Analysis for applied mathematics, Numerical Analysis, Cryptography, Mathematical Finance | |||
Applied Mathematics 2 | 응용수학 2 | Analysis for applied mathematics, Numerical Analysis, Cryptography, Mathematical Finance | 3 |
Analysis for applied mathematics, Numerical Analysis, Cryptography, Mathematical Finance | |||
Topics in Applied Mathematics 1 | 응용수학 특강1 | - | 3 |
- | |||
Topics in Applied Mathematics 2 | 응용수학 특강2 | - | 3 |
- | |||
Mathematical Statistics 1 | 수리통계학 1 | Sufficient Statistics, UMVU Estimators, Performance of the Estimators, The Information Inequality, Linear Models, Large Sample Theory, Asymptoic Optimality, Randomization, Bayesian Statistics, Uniformly Most Powerful Tests, Linear Hypotheses, Nonparametric Statistics, Robust Statistics. | 3 |
Sufficient Statistics, UMVU Estimators, Performance of the Estimators, The Information Inequality, Linear Models, Large Sample Theory, Asymptoic Optimality, Randomization, Bayesian Statistics, Uniformly Most Powerful Tests, Linear Hypotheses, Nonparametric Statistics, Robust Statistics. | |||
Mathematical Statistic 2 | 수리통계학 2 | Sufficient Statistics, UMVU Estimators, Performance of the Estimators, The Information Inequality, Linear Models, Large Sample Theory, Asymptoic Optimality, Randomization, Bayesian Statistics, Uniformly Most Powerful Tests, Linear Hypotheses, Nonparametric Statistics, Robust Statistics. | 3 |
Sufficient Statistics, UMVU Estimators, Performance of the Estimators, The Information Inequality, Linear Models, Large Sample Theory, Asymptoic Optimality, Randomization, Bayesian Statistics, Uniformly Most Powerful Tests, Linear Hypotheses, Nonparametric Statistics, Robust Statistics. | |||
Probability Theory1 | 확률론 1 | Probability Measures, Existence and Extension, Denumerable Probabilities, Random Variables, Expected value, The Law of Large numbers, Weak Convergence, Characteristic Functions, The Central Limit Theorem, The Radon-Nikodym Theorem, Conditional Probability, Conditional Expectation, Martingales | 3 |
Probability Measures, Existence and Extension, Denumerable Probabilities, Random Variables, Expected value, The Law of Large numbers, Weak Convergence, Characteristic Functions, The Central Limit Theorem, The Radon-Nikodym Theorem, Conditional Probability, Conditional Expectation, Martingales | |||
Probability Theory 2 | 확률론 2 | Probability Measures, Existence and Extension, Denumerable Probabilities, Random Variables, Expected value, The Law of Large numbers, Weak Convergence, Characteristic Functions, The Central Limit Theorem, The Radon-Nikodym Theorem, Conditional Probability, Conditional Expectation, Martingales | 3 |
Probability Measures, Existence and Extension, Denumerable Probabilities, Random Variables, Expected value, The Law of Large numbers, Weak Convergence, Characteristic Functions, The Central Limit Theorem, The Radon-Nikodym Theorem, Conditional Probability, Conditional Expectation, Martingales | |||
Partial Differential Equations 1 | 편미분방정식론 1 | Harmonic Functions, Heat Equations, Wave Equations, Sobolev Spaces, Elliptics Equations, Parabloic Equations, Hyperbolic Equations, Variational Methods | 3 |
Harmonic Functions, Heat Equations, Wave Equations, Sobolev Spaces, Elliptics Equations, Parabloic Equations, Hyperbolic Equations, Variational Methods | |||
Partial Differential Equations 2 | 편미분방정식론 2 | Harmonic Functions, Heat Equations, Wave Equations, Sobolev Spaces, Elliptics Equations, Parabloic Equations, Hyperbolic Equations, Variational Methods | 3 |
Harmonic Functions, Heat Equations, Wave Equations, Sobolev Spaces, Elliptics Equations, Parabloic Equations, Hyperbolic Equations, Variational Methods | |||
Topics in Partial Differential Equations 1 | 편미분방정식론 특강 1 | Recent Topics in Partial Differential Equations | 3 |
Recent Topics in Partial Differential Equations | |||
Topics in Partial Differential Equations 2 | 편미분방정식론 특강 2 | Recent Topics in Partial Differential Equations | 3 |
Recent Topics in Partial Differential Equations | |||
Rings and Modules 1 | 환과 Module론 1 | Noether Rings, Artin Rings, Jacobson Radical, Semisimple Rings, Free Module, Projective Module, Injective Module | 3 |
Noether Rings, Artin Rings, Jacobson Radical, Semisimple Rings, Free Module, Projective Module, Injective Module | |||
Rings and Modules 2 | 환과 Module론 2 | Noether Rings, Artin Rings, Jacobson Radical, Semisimple Rings, Free Module, Projective Module, Injective Module | 3 |
Noether Rings, Artin Rings, Jacobson Radical, Semisimple Rings, Free Module, Projective Module, Injective Module | |||
Commutative Algebra 1 | 가환대수 1 | Primary Decomposition, Integral Dependence, Discrete Valuation Rings, Dedekind Domain, Completion, Graded Rings, Dimension Theory, Local Rings | 3 |
Primary Decomposition, Integral Dependence, Discrete Valuation Rings, Dedekind Domain, Completion, Graded Rings, Dimension Theory, Local Rings | |||
Commutative Algebra 2 | 가환대수 2 | Primary Decomposition, Integral Dependence, Discrete Valuation Rings, Dedekind Domain, Completion, Graded Rings, Dimension Theory, Local Rings | 3 |
Primary Decomposition, Integral Dependence, Discrete Valuation Rings, Dedekind Domain, Completion, Graded Rings, Dimension Theory, Local Rings | |||
Non-commutative Algebra 1 | 비가환대수 1 | Local Rings, Semilocal Rings, Perfect Rings, Semiperfect Rings, von Neumann regular Rings, PI-algebra, Group ring, Division algebra | 3 |
Local Rings, Semilocal Rings, Perfect Rings, Semiperfect Rings, von Neumann regular Rings, PI-algebra, Group ring, Division algebra | |||
Non-commutative Algebra 2 | 비가환대수 2 | Local Rings, Semilocal Rings, Perfect Rings, Semiperfect Rings, von Neumann regular Rings, PI-algebra, Group ring, Division algebra | 3 |
Local Rings, Semilocal Rings, Perfect Rings, Semiperfect Rings, von Neumann regular Rings, PI-algebra, Group ring, Division algebra | |||
Numerical Solutions of Ordinary Differential Equations | 수치 상미분 방정식 | Numerical solution of initial-value problems by Runge-Kutta methods, general one-step methods, and multistep methods; analysis of truncation error, discretization error, and rounding error; stability of multi-step methods; numerical solution of boundary value and eigen-value problem by initial-value techniques and finite difference methods; topics of current interest. | 3 |
Numerical solution of initial-value problems by Runge-Kutta methods, general one-step methods, and multistep methods; analysis of truncation error, discretization error, and rounding error; stability of multi-step methods; numerical solution of boundary value and eigen-value problem by initial-value techniques and finite difference methods; topics of current interest. | |||
Numerical Solution of Partial Differential Equations | 수치 편미분 방정식 | The numerical solution of hyperbolic, and elliptic equations by finite difference methods. finite element methods, and collocation methods; iterative methods(Gauss-Seidel, over relation, alternating direction) for solving elliptic equations, discretization and round-off errors; explicit and implicit methods for parabolic and hyperbolic systems; the methods of characteristic; the concept of stability initial value problems ; topics of current interest. | 3 |
The numerical solution of hyperbolic, and elliptic equations by finite difference methods. finite element methods, and collocation methods; iterative methods(Gauss-Seidel, over relation, alternating direction) for solving elliptic equations, discretization and round-off errors; explicit and implicit methods for parabolic and hyperbolic systems; the methods of characteristic; the concept of stability initial value problems ; topics of current interest. | |||
Fourier Analysis | Fourier 해석학 | Fourier Seires, Fouries Transform, Application | 3 |
Fourier Seires, Fouries Transform, Application | |||
Cryptography 1 | 암호론 1 | This course provides an introduction to cryptography. The material covered includes various models of encryption - symmetric and asymmetric, pseudorandomness, digital signatures, and network applications to cryptography. | 3 |
This course provides an introduction to cryptography. The material covered includes various models of encryption - symmetric and asymmetric, pseudorandomness, digital signatures, and network applications to cryptography. | |||
Cryptography 2 | 암호론 2 | This course provides an introduction to cryptography. The material covered includes various models of encryption - symmetric and asymmetric, pseudorandomness, digital signatures, and network applications to cryptography. | 3 |
This course provides an introduction to cryptography. The material covered includes various models of encryption - symmetric and asymmetric, pseudorandomness, digital signatures, and network applications to cryptography. | |||
Quantum Information Theory 1 | 양자정보론 1 | This provides an introduction to quantum information theory. Topics covered; quantum algorithms including Shor 's factoring algorithm and Grover 's search algorithm; quantum error correction; quantum communication and cryptography. | 3 |
This provides an introduction to quantum information theory. Topics covered; quantum algorithms including Shor 's factoring algorithm and Grover 's search algorithm; quantum error correction; quantum communication and cryptography. | |||
Quantum Information Theory 2 | 양자정보론 2 | This provides an introduction to quantum information theory. Topics covered; quantum algorithms including Shor 's factoring algorithm and Grover 's search algorithm; quantum error correction; quantum communication and cryptography. | 3 |
This provides an introduction to quantum information theory. Topics covered; quantum algorithms including Shor 's factoring algorithm and Grover 's search algorithm; quantum error correction; quantum communication and cryptography. | |||
Thesis Research 1 | 논문지도 1 | 학위청구논문을 체계적이고 논리적으로 쓸 수 있도록 지도한다. | 2 |
Give students a guidance to do research on thesis topics. | |||
Thesis Research 2 | 논문지도 2 | 학위청구논문을 체계적이고 논리적으로 쓸 수 있도록 지도한다. | 2 |
Give students a guidance to do research on thesis topics. | |||
Thesis Research 3 | 논문지도 3 | 학위청구논문을 체계적이고 논리적으로 쓸 수 있도록 지도한다. | 2 |
Give students a guidance to do research on thesis topics. |